DOI: 10.1002/ejic.200601025

Alkyl Abstraction from a Trialkylyttrium Complex [YR₃(thf)₂] (R = CH₂SiMe₃) Using a Group-13 Element Lewis Acid ER₃ (E = B, Al, Ga, In) – Structural Characterisation of the Ion Pair [YR₂(thf)₄]⁺[GaR₄]⁻ and of ER₃ (E = B, Al, Ga)

Mathias U. Kramer, $^{[a]}$ Dominique Robert, $^{[a]}$ Yumiko Nakajima, $^{[a]}$ Ulli Englert, $^{[a]}$ Thomas P. Spaniol, $^{[a]}$ and Jun Okuda $^{*[a]}$

Keywords: Yttrium / Lewis acids / Alkyl abstraction / Group-13 elements / Cationic complexes

The alkyl abstraction reaction of $[YR_3(thf)_2]$ ($R = CH_2SiMe_3$) with group-13 trialkyl complexes $[(ER_3)_n]$ (E = B, Ga, In: n = 1; E = Al: n = 2) forming cationic yttrium species $[YR_2-(thf)_4]^+[ER_4]^-$ (E = Al, Ga, In) shows a strong dependence on the Lewis acidic metal centre E and on the solvent basicity. Whilst the boron compound does not react with $[YR_3(thf)_2]$, the heavier homologues form the ion pairs $[YR_2(thf)_4]^+[ER_4]^-$ (E = Al, Ga, In) which dissociate to give the neutral compounds in apolar solvents such as benzene. Single-crystal

structure analysis of the gallate $[YR_2(thf)_4]^+[GaR_4]^-$ shows the presence of an ion pair with cis-arranged alkyl ligands in the octahedral yttrium cation and a tetrahedral gallate anion. Group-13 trialkyl compounds $[(ER_3)_n]$ (E=B, Al, Ga), all liquids at room temperature, and $[Li(12\text{-crown-4})_2]^+[AlR_4]^-$ were characterised by single-crystal X-ray diffraction and NMR spectroscopy.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

Introduction

There has recently been an increasing interest in cationic alkyl complexes of rare-earth metals, due to their enhanced electrophilicity and application in homogeneous catalysis, most prominently in α-olefin polymerisation catalysis.^[1] One way to generate and isolate the cationic species is to irreversibly react neutral trialkyl complexes $[LnR_3(L)_n]$ with a weak Brønsted acid such as [NEt₃H][BPh₄] or a strong Lewis acid such as [Ph₃C][B(C₆F₅)₄]. Another way is an alkyl abstraction with neutral Lewis acids, in particular group-13 organometallic compounds such as $[B(C_6X_5)_3]$ (X = H, F). The resulting ion pairs are either charge-separated or consist of contact ion pairs, such as [ScMe2(Me3-TACN)(μ -Me)B(C₆F₅)₃], (TACN = 1,4,7-triazacyclononane) prepared from [ScMe₃(Me₃-TACN)] $[B(C_6F_5)_3]$ in thf.^[2] In the context of studying homogeneous ethylene polymerisation catalysis by [Y(CH₂SiMe₃)₃(thf)₂]/ [PhNMe₂H][B(C₆F₅)₄]/[AlR₃] we isolated a charge-separated ion pair $[Y(CH_2SiMe_3)_2(thf)_4]^+[Al(CH_2SiMe_3)_4]^-$ (1a) from the reaction of [Y(CH₂SiMe₃)₃(thf)₂] and [Al-(CH₂SiMe₃)₃(thf)] that underwent further protonolysis to afford the dication $[Y(CH_2SiMe_3)(thf)_5]^+[B(C_6F_5)_4]_2^{-[3,4]}$ We report here a solvent dependent reversible equilibrium between ionic 1a and its neutral precursors [Y(CH₂SiMe₃)₃-

(thf)₂] and [Al(CH₂SiMe₃)₃(thf)] and an extension of this alkyl abstraction reaction to the use of homologous group-13 trialkyl compounds [{E(CH₂SiMe₃)₃}_n] (E = B, 3, n = 1; E = Al, 4, n = 2; E = Ga, 5, n = 1; E = In, 6, n = 1). In addition, we present the crystal structures of the group-13 trialkyl complexes 3–5.^[5]

Results and Discussion

Cationic Yttrium Complexes

Encouraged by the facile formation of 1a by reaction of the trialkyl compound [Y(CH₂SiMe₃)₃(thf)₂] with a stoichiometric amount of the trialkylaluminium 4 in thf,[3,4] attempts were made to synthesise yttrium cationic complexes bearing the analogous borate, gallate and indate $[Ga(CH_2SiMe_3)_4]^-$, anions. $[B(CH_2SiMe_3)_4]^-$ [In(CH₂SiMe₃)₄] respectively. It was found, however, that whilst the reaction proceeds at ambient temperature for the gallium and indium species 5 and 6 in thf, no reaction was observed with the borane 3 in $[D_8]$ thf or $[D_5]$ bromobenzene at elevated temperatures up to 60 °C. The lack of reactivity of 3 is not only due to insufficient Lewis acidity of the boron atom in 3, as [B(CH₂SiMe₃)₄] is a known species with a variety of cations, [6] but it appears that the neutral boron compound is not sufficiently electrophilic to abstract an alkyl group from the yttrium centre. A possible explanation is the formation of a very stable adduct with thf, as is the case in the alkyl abstraction from [Y(CH₂SiMe₃)₃(thf)₂]

 [[]a] Institute of Inorganic Chemistry, RWTH Aachen University Landoltweg 1, 52074 Aachen, Germany Fax: +49-241-8092644 E-mail: jun.okuda@ac.rwth-aachen.de

FULL PAPER

J. Okuda et al.

using $[B(C_6F_5)_3]$, where heating of the reaction mixture was necessary for the abstraction to proceed. ^[4] The low reactivity of **3** towards Lewis bases compared to the remaining group-13 species is also illustrated in its negligible water sensitivity, whereas **4–6** all react with water. ^[5] The formation of alkyl gallates and indates $[Y(CH_2SiMe_3)_2(thf)_4]^+$ $[E(CH_2SiMe_3)_4]^-$ (E = Ga, **1b**; In, **1c**) as charge-separated ion pairs in thf solutions (vide infra) represents the first cationic rare-earth metal alkyl complexes with these anions (Table 1). Previously only neutral complexes with bridging alkyl groups bound to gallium were reported. ^[7]

Table 1. Selected bond lengths [Å] and bond angles [°] for ${\bf 1b}^{[a]}$ and ${\bf 7c}$

$[Y(CH_2SiMe_3)_2(thf)_4]^+$ $[Ga(CH_2SiMe_3)_4]^-$ (1b)		[Li(12-crown-4) ₂] ⁺ [Al(CH ₂ SiMe ₃) ₄] ⁻ (7c)	
Y2-C41	2.400(3)		
Y2-C45	2.368(3)		
Y2-O5	2.479(2)		
Y2-O6	2.3349(19)		
Y2-O7	2.3243(19)		
Y2-O8	2.424(2)		
C41-Y2-C45	102.94(11)		
Ga1-C25	2.038(3)	Al-C17	2.0300(13)
Ga1-C29	2.040(3)	Al-C18	2.0247(14)
Ga1-C33	2.057(3)	Al-C19	2.0278(14)
Ga1-C37	2.031(3)	Al-C20	2.0311(14)
C33-Ga1-C37	108.06(11)	C17-Al-C18	114.80(6)
C37-Ga1-C25	107.98(13)	C17-Al-C19	106.43(6)
C37-Ga1-C29	109.59(11)	C17-Al-C20	107.58(6)

[a] For 1b only one of the two crystallographically independent ion pairs chosen.

Based on the results from X-ray crystallographic and NMR spectroscopic analysis in $[D_8]$ thf, complex 1a was described previously as a charge-separated ion pair. When measured in less donating solvents, such as $[D_6]$ benzene, $[D_8]$ toluene and $[D_5]$ bromobenzene, the previously isolated complex 1a dissociates to form $[Y(CH_2SiMe_3)_3(thf)_2]$ and $[Al(CH_2SiMe_3)_3(thf)]$ (Scheme 1). The NMR spectra are exact superpositions of the spectra of the corresponding neutral species. A notable feature for the $AlCH_2$ signal in the 1H NMR spectra ($[D_8]$ thf) is that the signal in $[Al(CH_2SiMe_3)_3(thf)]$ is a singlet, whilst the corresponding resonance in the anion $[Al(CH_2SiMe_3)_4]^-$ is a distorted sextet due to coupling to quadrupolar aluminium (I = 5/2) that

collapses to a singlet in the ${}^{1}H\{{}^{27}Al\}$ decoupled spectrum (Figure 1). Correspondingly, the ${}^{27}Al$ NMR shows a nonet at $\delta = 150.9$ ppm with ${}^{2}J_{Al,H} = 9.0$ Hz. The same NMR spectroscopic features are found for the lithium salts containing the anion [Al(CH₂SiMe₃)₄]⁻ (vide infra), confirming the ion separation in thf solution.

Addition of one equivalent of 12-crown-4 to a [D₆]benzene solution of 1a results in complete ionisation of the neutral species to form the previously reported ion pair $[Y(CH_2SiMe_3)_2(12-crown-4)(thf)]^+[Al(CH_2SiMe_3)_4]^-$ (2a). [4] Similarly, upon addition of $[D_8]$ thf to the $[D_6]$ benzene solution of the neutral compounds, dissociation occurs, depending on the solvent mixture and temperature. An investigation of 1a in a range of [D₆]benzene/[D₈]thf mixtures (composition range 40-60 mol-% of [D₈]thf) and at different temperatures was therefore conducted. However, even inside this reduced range, an exact quantification of equilibrium constants $K = c([Y(CH_2SiMe_3)_2(thf)_4][Al(CH_2-thf)_4]$ $SiMe_3)_4]/c([Y(CH_2SiMe_3)_3(thf)_2]) \cdot c([Al(CH_2SiMe_3)_3(thf)])$ for the equilibrium depicted in Scheme 1 remained difficult due to peak overlapping in the ¹H NMR spectra. An increase in the amount of [D₈]thf leads to an increase in the dissociation constant K. Using a 60:40 mixture $[D_8]$ thf/ $[D_6]$ benzene, variable-temperature NMR measurements were conducted at 25 °C, 35 °C, and 45 °C. Using the van't Hoff equation $d(\ln K)/dT = \Delta_r H^{\circ}/RT^2$, the standard enthalpy change for the ionisation $\Delta_r H^o$ is estimated as about -70 kJ mol⁻¹ at 308 K. The exchange equilibrium is slow on the NMR timescale, as coupling patterns of the neutral and cationic yttrium species are observed.

Similarly to the aluminate 1a, both gallate 1b and indate 1c form charge-separated complexes in the solutions. The signals in their NMR spectra belonging to the [Y(CH₂Si-Me₃)₂(thf)₄]⁺ cation are identical to those reported for the aluminate 1a and similar to those of compounds containing other anions (Table 2), indicating that the anions are only weakly coordinating in the [D₈]thf solutions.^[9] Probably due to the quadrupolar nature of Ga (I = 3/2) and In (I = 9/2), the ¹H NMR signals assigned to the ECH₂ (E = Ga, In) protons are very broad (Figure 2). The corresponding signal for the indate 1c in the ¹³C NMR spectrum is not detected, as was previously noted for the ¹³C signals of BCH₂ in similar complexes containing the [B(C₆X₅)₃-(CH₂SiMe₃)]⁻ (X = H, F) anions.^[4]

$$\mathsf{Me}_3\mathsf{SiCH}_2 - \mathsf{Y} - \mathsf{CH}_2\mathsf{SiMe}_3 + \mathsf{[E(CH}_2\mathsf{SiMe}_3)_3(\mathsf{thf})] - \mathsf{Solv} - \mathsf{CH}_2\mathsf{SiMe}_3 \\ - \mathsf{CH}_2\mathsf{SiMe}_3 + \mathsf{[E(CH}_2\mathsf{SiMe}_3)_3(\mathsf{thf})] - \mathsf{CH}_2\mathsf{SiMe}_3 \\ - \mathsf{CH}_2\mathsf{SiMe}_3 - \mathsf{CH}_2\mathsf{SiMe}_3 - \mathsf{CH}_2\mathsf{SiMe}_3 \\ - \mathsf{CH}_2\mathsf{SiMe}_3 - \mathsf{CH}_2\mathsf{CH}_2\mathsf{SiMe}_3 - \mathsf{CH}_2\mathsf{$$

solv = C_6D_6 , [D₈]toluene, C_6D_5Br E = Al (1a); Ga (1b); In (1c)

Scheme 1.

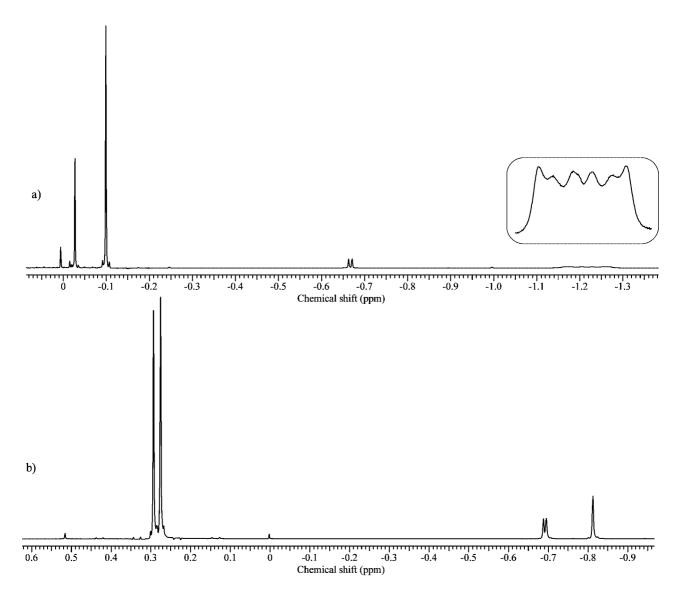


Figure 1. ¹H NMR spectra at 25 °C of [Y(CH₂SiMe₃)₂(thf)₄]⁺[Al(CH₂SiMe₃)₄]⁻ (1a) in a) [D₈]thf and b) in C₆D₆.

Table 2. 1H NMR spectroscopic data (25 °C, $[D_8]$ thf) for $[Y(CH_2-SiMe_3)_2(thf)_4]^+[A]^-$.

Anion [A]	δ_{H} of YCH ₂ (ppm)	$^2J_{Y,H}$ (Hz)	Ref.
[Ga(CH ₂ SiMe ₃) ₄]	-0.68	3.0	this work
[In(CH ₂ SiMe ₃) ₄]	-0.68	3.3	this work
$[Al(CH_2SiMe_3)_4]$	-0.68	3.2	this work
$[B(C_6F_5)_4]$	-0.69	3.2	[4]
[BPh ₄]	-0.77	3.3	[4]
$[B(C_6F_5)_3(CH_2SiMe_3)]$	-0.70	2.9	[4]
[BPh ₃ (CH ₂ SiMe ₃)]	-0.80	3.2	[4]

When NMR spectra of 1b and 1c are measured in $[D_6]$ -benzene, $[D_8]$ toluene, and $[D_5]$ bromobenzene, it is found that on the NMR timescale all CH_2 protons and all $SiMe_3$ protons are equivalent in these solvents. The peaks in the 1H NMR spectra appear broad, and lack any coupling pattern to yttrium. It is therefore postulated that the mole-

cules are fluxional and exchange alkyl groups intermolecularly (due to the lack of coupling) fast on the NMR timescale. Spectra of 1b in $[D_8]$ thf and $[D_6]$ benzene are shown in Figure 2. This situation is similar to that found in compounds of the type $MR_2 \cdot ZnR_2$ (M = Sr or Ba; $R = CH_2SiMe_3$). [10] NMR spectroscopic analysis of these compounds showed that all alkyl groups are chemically and magnetically equivalent on the NMR timescale and an equilibrium between neutral alkyl complexes, "ate" complexes, contact ion pairs and solvent separated ions was proposed in the literature. [10–12]

A further example for solvent dependence of the structures and for intra-/intermolecular exchange was reported for $[La(\eta^5-C_5Me_5)\{CH(SiMe_3)_2\}BPh_4]$, where the tetraphenylborate anion is coordinating to the lanthanum centre in aromatic solvents. In constrast to the case of **1b** and **1c**, irreversible charge separation is achieved by solvation to give $[La(\eta^5-C_5Me_5)\{CH(SiMe_3)_2\}\{thf)_3][BPh_4]$ in thf.^[13]

FULL PAPER

J. Okuda et al.

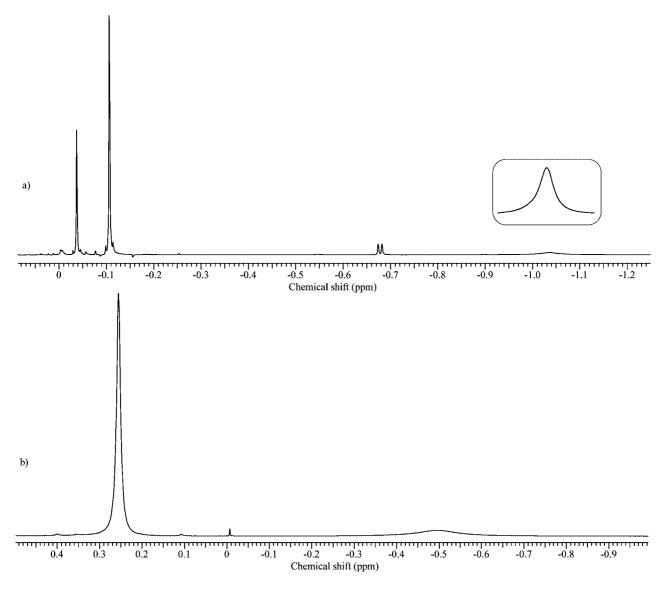


Figure 2. ¹H NMR spectra at 25 °C of [Y(CH₂SiMe₃)₂(thf)₄][Ga(CH₂SiMe₃)₄] (1b) in a) [D₈]thf and b) in C₆D₆.

Upon addition of one equivalent of 12-crown-4 to $[D_6]$ -benzene solutions of $\bf 1b$ and $\bf 1c$ the molecules separate into the charge-separated ion pairs $[Y(CH_2SiMe_3)_2(12\text{-crown-4})(thf)]^+[E(CH_2SiMe_3)_4]^-$ (E = Ga, $\bf 2b$; In, $\bf 2c$), as was observed for $\bf 1a$. The peaks arising from the cationic yttrium species are similar in all three cases, implying only weakly coordinating anions.

Single crystals of the gallate **1b** suitable for X-ray analysis were grown by slowly cooling a thf/pentane solution to –30 °C. The unit cell contains two sets of independent ion pairs, each expressing slightly distorted tetrahedral geometry around the gallium atom and distorted octahedral geometry around the yttrium centre (Figure 3). Whilst the cationic fragments express a similar octahedral geometry with *cis*-arranged alkyl groups to that observed in [Y(CH₂SiMe₃)₂-(thf)₄]⁺[Al(CH₂SiMe₃)₄]⁻ (**1a**),^[3] the anionic fragments are slightly more distorted from perfect tetrahedral geometry than their aluminate counterparts, with C–Ga–C angles

ranging from 107.98(13)° to 111.02(11)°, compared to C–Al–C bond angles only ranging from 108.9(2)° to 109.8(3)° (vide infra).

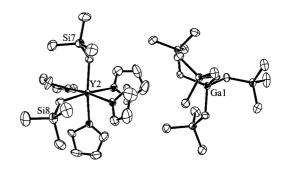


Figure 3. ORTEP representation of one ion pair of [Y(CH₂SiMe₃)₂-(thf)₄]⁺[Ga(CH₂SiMe₃)₄]⁻ (**1b**). Displacement ellipsoids drawn at the 50% probability level, hydrogen atoms omitted for clarity.

The Y–C bond lengths range from 2.375(3) Å to 2.400(3) Å and thus lie within the range of distances reported in the literature for cationic and neutral (trimethyl-silymethyl)yttrium complexes as are the Y–O distances [2.324(2) Å to 2.478(2) Å]. The Ga–C distances found in the two anions range from 2.031(3) Å to 2.058(3) Å (mean 2.042 Å) and are very similar to those found for the sterically less demanding benzyl ligand in [Mg₃Br_{2.4}Cl_{1.6}(OEt₂)₆]-[Ga(CH₂Ph)₄]₂·0.5 toluene (2.039 Å mean), [14] the terminal trimethylsilylmethyl ligand in [Li(dioxane)_{1.5}][Ga(CH₂Si-Me₃)₄] (2.025 Å mean), [15] and the bulky fluorenyl ligand in [Li(DME)₃][Ga(C₁₃H₉)₄] (2.062 Å mean). [16] Compared to the parent molecule 5 the bonds have increased in length by about 5%.

Structure of Tris(trimethylsilylmethyl) Group-13 Metal Complexes

To compare the Lewis acidity of the group-13 complexes we have carried out structural comparison of the (trimethylsilylmethyl)boron, -aluminium and -gallium compounds 3–5. As expected, only the aluminium compound turned out to be dinuclear (Table 3).

Table 3. Selected bond lengths $[\mathring{A}]$ and bond angles [°] for 3, 4 and 5

	[B(CH ₂ SiMe ₃) ₃]	[{Al(CH ₂ SiMe ₃) ₃ } ₂]	[Ga(CH ₂ SiMe ₃) ₃]
M-M	_	2.8328(13)	_
M-C1	1.567(3)	2.031(2)	1.954(4)
M-C2	1.563(3)	1.958(2)	1.971(3)
M-C3	1.573(3)	1.958(2)	1.952(4)
M-C1'	_	2.336(2)	_
C1-Si1	1.871(2)	1.909(2)	1.852(4)
C2-Si2	1.8820(19)	1.854(2)	1.855(4)
C3–Si3	1.874(2)	1.858(2)	1.852(4)
C1-M-C2	119.01(17)	116.46(10)	118.61(16)
C2-M-C3	121.12(17)	115.35(9)	121.82(16)
C3-M-C1	119.82(18)	111.53(9)	119.56(15)
M-C1-M'	_	80.55(7)	_
M-C1-Si1	117.13(13)	109.10(10)	116.60(19)
M-C2-Si2	114.27(14)	130.21(12)	114.82(19)
M-C3-Si3	119.73(15)	124.75(11)	118.24(19)
$M\!\!-\!\!C1'\!\!-\!\!Si1'$	_	167.57(12)	_

Tris(trimethylsilylmethyl)boron

As expected, the crystal structure of tris(trimethylsilylmethyl)boron (3), Figure 4, revealed discrete molecules, structurally similar to BEt₃ with respect to the arrangement of the ligands around the central atom.^[17] The three B–C–Si angles [117.04° on average, ranging from 114.27(14)° to 119.73(15)°] deviate from the ideal tetrahedral angle 109.47° at the carbon, which was already observed in other tris(al-kyl) boron compounds (cf. BEt₃: B–C–C average: 118.9°,^[17] or BtBu₃: B–C–C 120.6(2)°^[18]). In these compounds, hyperconjugation was invoked to justify these abnormally large values. In 3 however, it is more likely that the important steric bulk of the trimethylsilyl groups dictates their orientation, rather than hyperconjugation. Indeed, the B–C–Si

angles of the two groups pointing towards each other [B–C1–Si1 117.13(13)° and B–C3–Si3 119.73(15)°] are found to be larger than the corresponding angle in the third alkyl group [B–C2–Si2 114.27(14)°].

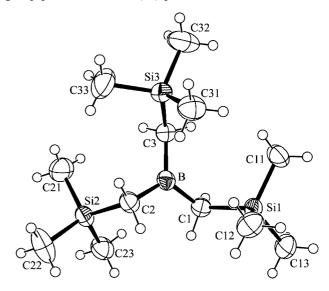


Figure 4. ORTEP representation of the molecular structure of $[B(CH_2SiMe_3)_3]$ (3). Displacement ellipsoids of non-H atoms drawn at the 50% probability level.

The B–C bond lengths [1.568 Å mean, ranging from 1.563(3) Å to 1.573(3) Å] do not present any particular deviation from the values typically observed in homoleptic boron compounds. The same was observed for the C–B–C angles, the planar geometry around the boron centre being almost perfect ($\Sigma_{\rm C-B-C} = 359.95^{\circ}$).

Tris(trimethylsilylmethyl)aluminium

 $\begin{array}{lll} As & many & other & homoleptic & (e.g. & [(AlMe_3)_2],^{[19]} \\ [(AlPh_3)_2],^{[20]} & [\{Al(cyclo-Pr)_3\}_2],^{[21]} & [\{Al(C_6H_4-2-Me)_3\}_2]^{[22]}) \end{array}$ and mixed-alkyl (e.g. $[\{AlMe_2(\mu-Ph)\}_2]$, $[\{AliBu_2(\mu-Ph)\}_2]$ C=CtBu)₂]^[24]) aluminium species, [{Al(CH_2SiMe_3)₃}₂] (4), Figure 5, was found to adopt a dimeric structure. The molecule shows crystallographic inversion symmetry and exhibits in addition two non-equivalent C-Al bonds for each bridging carbon in the solid state. Only few organoaluminium compounds have so far been reported to exhibit such unsymmetrical bridges (e.g. $[\{AlPh_2(\mu-C\equiv CPh)\}_2],^{[25]}$ or $[{AlMe_2(\mu-C\equiv CMe)}_2]^{[26]}$). Until now, to the best of our knowledge, no homoleptic dimeric trialkylaluminium compound featuring non-equivalent bridges has been reported. Thus 4 appears to be the first example for this coordination mode in the solid state. These findings are in agreement with a previous report that 4 is only partially dimerised in benzene solution based on cryoscopic measurements.^[27]

Due to steric bulk of the CH₂SiMe₃ groups, the Al–Al distance observed in [{Al(CH₂SiMe₃)₃}₂] of 2.8328(13) Å is amongst the longest reported. As a consequence, the Al–C1–Al' bridge angle of 80.55(7)° is also slightly larger than usually observed (Table 4). Only heteroleptic aluminium de-

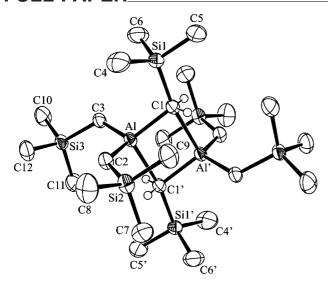


Figure 5. ORTEP representation of the molecular structure of [{Al(CH₂SiMe₃)₃}₂] (4). Displacement ellipsoids of non-H atoms drawn at the 50% probability level; only hydrogen atoms bonded to bridging carbons shown.

rivatives bearing rigid bridging groups like [{AlPh $_2(\mu-C\equiv CPh)$ } $_2$] (Al $_2(\mu-C\equiv CMe)$) $_2$] (Al $_3(\mu-C\equiv CMe)$) $_2$] [Al $_3(\mu-C\equiv CMe)$] display larger bridge angles.

Table 4. Al–Al bond lengths [Å] and Al–C_b–Al angles [°] for dimeric organoaluminium compounds.

Compound	Al–Al [Å]	Al-C _b -Al [°]	Ref.
${[\{Al(CH_2SiMe_3)_3\}_2]}$	2.8328(13)	80.55(7)	this work
$[(AlMe_3)_2]$	2.700(10)	78.0(3)	[19]
$[\{AlMe_2(\mu-Ph)\}_2]$	2.690(4)	77.8(2)	[23]
$[(AlPh_3)_2]$	2.702(2)	76.5(2)	[20]
$[{Al(C_6H_4-2-Me)_3}_2]$	2.817(2)	81.9(1)	[22]
$[{Al(cyclo-Pr)_3}_2]^{[a]}$	2.618(3)/2.607(3)	78.2(3)/77.9(2)	[21]

[a] First value determined at 22 °C, second at -67 °C.

In 4 the SiMe₃ fragment of the bridging ligands is oriented away from the second aluminium centre [Al-Cb-Si1 $109.10(10)^{\circ}$ and Al'-C_b-Si1 $167.57(12)^{\circ}$]. The two protons and the trimethylsilyl group bonded to the bridging carbons are in a staggered conformation with the silicon being located 0.2539(8) Å outside of the plane defined by Al, C_b, Al' and C_b'. The sum of the C-Al-C angles around the aluminium ($\Sigma_{C-Al-C} = 343.34^{\circ}$) represents a non-negligible deviation from planarity, with the aluminium situated 0.4748 Å above the C1–C2–C3 plane. The bonds to the terminal alkyl groups [Al-C2 and Al-C3 1.958(2) Å] were found to be in the typical range for this type of compound. The Al-C bond of the bridging ligand [Al-C1 2.031(2) Å] shows considerable elongation; the second bridging contact [Al-C1' 2.336(2) Å] is the longest ever reported in such a dimer. [(AlPh₃)₂] is the only other known compound with bridging contacts of that magnitude [Al-C_b 2.180(5) and $Al-C_b'$ 2.184(5) Å].[20]

Tris(trimethylsilylmethyl)gallium

[Ga(CH₂SiMe₃)₃] (5), Figure 6, crystallises with four equivalent monomeric molecules per unit cell. Unlike in [GaEt₃],^[28] in which the three ethyl groups adopt a propeller-like configuration (in only three of the four independent molecules of the unit cell however), the CH₂SiMe₃ groups in 5 adopt a structure resembling that of 3. Two alkyl groups occupy the same side of the molecule, and display enlarged Ga-C-Si angles [116.60(19)° and 118.24(19)°] whilst the third one lies on the opposite side and is more bent towards the gallium centre [Ga-C2-Si2 114.82(19)°]. With an average value of 116.55°, the Ga-C-Si angles express the same deviation from the expected value as does the boron homologue (117.04° mean). In 5 hyperconjugation again has smaller influence on the molecular geometry than the steric requirements of the ligands. The Ga-C bond lengths [1.959 Å mean, ranging from 1.952(4) Å to 1.971(3) Å] fall within the range of already reported values, as well as the C-Si bonds. The three groups define a perfectly planar skeleton around the gallium (Σ_{C-Ga-C} = 359.99°).

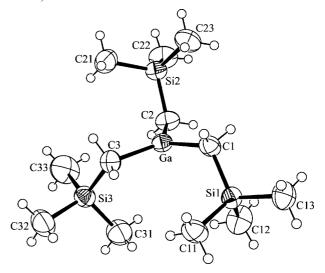


Figure 6. ORTEP representation of the molecular structure of [Ga(CH₂SiMe₃)₃] (5). Displacement ellipsoids drawn at the 50% probability level.

That [Ga(CH₂SiMe₃)₃] is monomeric is of no great surprise, since other structurally characterised trialkylgallium compounds which do not contain ligand-based electron pairs tend to be monomeric. [GaEt₃] exhibits short intermolecular contacts in the solid-state structure, and [GaMe₃] shows a tetrameric arrangement of the molecules in the lattice, the interactions in both compounds being however very weak. [28] Dimeric gallium compounds require electron-donating bridging ligands, such as [{GaMe₂(μ-C = CMe)₂],^[29] $[{Ga(CH=CH_2)_3}_2],^{[30]}$ [{GaMe₂(µ- $C = CPh)_{2},^{[31]} [\{Ga(CH_{2}Ph)_{2}Br\}_{2}] \text{ or } [\{Ga(CH_{2}Ph)_{2}-CH_{2}Ph\}_{2}]$ $(NHtBu)_{2}$. The solid-state structure of a TMEDA of $[Ga(CH_2SiMe_3)_3]$, $[\{Ga(CH_2SiMe_3)_3\}_2]$. Me₂NCH₂CH₂NMe₂^[33] shows slightly elongated Ga-C bonds (by 1.6% on average) compared to the parent molecule [Ga(CH₂SiMe₃)₃], but no significant influence of the TMEDA coordination could be seen in the length of the C–Si bonds.

Lithium Tetrakis(trimethylsilylmethyl)aluminates

To compare with the structure of the ion pair [Y(CH₂- $SiMe_3$ ₂(thf)₄]⁺[Al(CH₂SiMe₃)₄]⁻ (1a), solvent separated lithium derivatives of the [Al(CH₂SiMe₃)₄] anion were prepared.^[3] Upon addition of two equivalents of TMEDA or 12-crown-4 to $[Li]^+[Al(CH_2SiMe_3)_4]^-$ (7a), [34] obtained by reaction of [{Al(CH₂SiMe₃)₃}₂] with LiCH₂SiMe₃, the corresponding adducts [Li(TMEDA)₂]⁺[Al(CH₂SiMe₃)₄]⁻ (7b) and $[Li(12\text{-crown-4})_2]^+[Al(CH_2SiMe_3)_4]^-$ (7c) were isolated. Crystals of 7c were obtained from cooling a saturated thf solution. The geometry around the aluminium centre is further shifted towards a regular tetrahedral arrangement compared to that in the neutral parent $[\{Al(CH_2SiMe_3)_3\}_2]$ (Figure 7). Thus, the three C-Al-C angles of the alkyl groups composing the "base" of the tetrahedron display very close values [106.43(6)°, 107.32(6)° and 107.58(6)°] whilst the fourth alkyl group (involving C18) forms together with the three other ligands angles of 110.02(6)°, 110.35(6)° and 114.80(6)°. All four Al-C bonds are almost equal (2.028 Å on average).

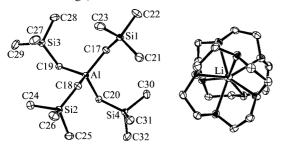


Figure 7. ORTEP representation of the molecular structure of $[\text{Li}(12\text{-crown-4})_2]^+[\text{Al}(\text{CH}_2\text{SiMe}_3)_4]^-$ (7c). Displacement ellipsoids drawn at the 50% probability level, hydrogen atoms omitted for clarity.

The anionic part of $[Y(CH_2SiMe_3)_2(thf)_4]^+[Al-(CH_2SiMe_3)_4]^-$ ($(1a)^{[3]}$ displays a geometry much closer to a regular tetrahedral arrangement. The three alkyl groups defining the base of the structure show C–Al–C angles of $109.7(2)^\circ$, $109.7(2)^\circ$ and $109.8(3)^\circ$. Angles of 109.19° in average ($\sigma = 0.2^\circ$) are measured between the fourth group and each of the three others. The aluminate anion in complex 1a seems to be less influenced by the presence of the counter cation, and therefore adopts a perfectly tetrahedral geometry. Similar Al–C bond lengths and Al–C–Si angles were measured in 1a (2.033 Å mean, cf. 2.029 Å in 7c; 122.20° mean, cf. 124.17° in 7c).

Conclusions

The Lewis acid induced alkyl transfer reaction of the prototypical rare earth metal alkyl complex [Y(CH₂SiMe₃)₃-(thf)₂] with group-13 metal compounds [{E(CH₂SiMe₃)₃}_n]

proceeds to give an ion pair [Y(CH₂SiMe₃)₂(thf)₄]⁺-[E(CH₂SiMe₃)₄]⁻ for E = Al, Ga and In in thf solution. In the presence of aromatic hydrocarbons, however, recombination to form the neutral precursors [Y(CH₂SiMe₃)₃(thf)₂] and [E(CH₂SiMe₃)₃(thf)] occurs. The small boron compound [B(CH₂SiMe₃)₃] failed to react with [Y(CH₂SiMe₃)₃(thf)₂] for kinetic reasons as well as for reduced Lewis acidity. The present results may be relevant to the reversible chain transfer reaction between rare earth metal alkyl catalyst and cocatalyst such as aluminium and zinc alkyl during olefin polymerisation.^[1,3,4,35]

Experimental Section

General: All operations were performed under an inert atmosphere of argon using standard Schlenk-line or glovebox techniques. Thf and pentane were distilled from sodium benzophenone ketyl and sodium benzophenone ketyl triglyme, respectively. Deuterated thf and benzene were dried with sodium, distilled and degassed prior to use; deuterated dichloromethane was dried with CaH2, then distilled and degassed. Anhydrous AlBr3, GaCl3, InCl3, YCl3, and BF₃·OEt₂ (STREM) were used as received. LiCH₂SiMe₃^[36] and [Y(CH₂SiMe₃)₃(thf)₂]^[37] were prepared according to literature procedure. All other chemicals were commercially available and used after appropriate purification. NMR spectra were recorded at room temperature on a Bruker DRX 400 spectrometer (¹H 400.1 MHz, ¹³C 100.6 MHz) or on a Varian Unity 500 spectrometer (¹H 499.6 MHz, ¹³C 125.6 MHz, ¹¹B 160.3 MHz, ⁷Li 194.2 MHz, ²⁷Al 130.2 MHz) unless otherwise stated. All chemical shifts are given in ppm. Chemical shifts for ¹H and ¹³C NMR spectra were referenced internally using the residual solvent resonances and reported relative to SiMe₄. ¹¹B NMR spectra were referenced externally to a saturated solution of NaBH₄ in D₂O. ⁷Li NMR spectra were referenced externally to a 1 mol L⁻¹ solution of LiCl in D₂O. ²⁷Al NMR spectra were referenced externally to a 1.5 mol L-1 solution of $Al(NO_3)_3$ in D_2O .

[Y(CH₂SiMe₃)₂(thf)₄][Al(CH₂SiMe₃)₄] (1a): The compound was prepared according to the literature procedure.^[3,4] ¹H NMR (200 MHz; [D₈]thf): $\delta = -1.22$ (sextet, AlCH₂, ² $J_{Al,H} = 9.0$ Hz, 8 H), -0.68 (d, ² $J_{Y,H} = 3.2$ Hz, 4 H, YCH₂), -0.11 [s, 36 H, AlCH₂Si-(CH₃)₃], 0.03 [s, 18 H, YCH₂Si(CH₃)₃], 1.77 (16 H, β-CH₂, thf), 3.62 (16 H, α-CH₂, thf) ppm. ²⁷Al NMR (130 MHz; [D₈]thf): $\delta = 150.9$ (nonet, ² $J_{Al,H} = 9.0$ Hz) ppm. ¹H NMR (400 MHz; C_6D_6): $\delta = -0.81$ (s, 6 H, AlCH₂), -0.69 (d, ² $J_{Y,H} = 2.8$ Hz, 6 H, YCH₂), 0.28 [s, 27 H, AlCH₂Si(CH₃)₃], 0.29 [s, 27 H, YCH₂Si(CH₃)₃], 1.27 (16 H, β-CH₂, thf), 3.72 (16 H, α-CH₂, thf) ppm. ¹³C{¹H} NMR (100 MHz; C_6D_6): $\delta = -0.67$ (AlCH₂), 3.30 [AlCH₂Si(CH₃)₃], 4.58 [YCH₂Si(CH₃)₃], 25.14 (β-CH₂, thf), 33.70 (d, ¹ $J_{Y,C} = 35.5$ Hz, YCH₂), 69.99 (α-CH₂, thf) ppm.

[Y(CH₂SiMe₃)₂(thf)₄][Ga(CH₂SiMe₃)₄] (1b): To a solution of [Y(CH₂SiMe₃)₃(thf)₂] (974 mg, 1.969 mmol) in thf (5 mL), [Ga(CH₂SiMe₃)₃] (653 mg, 1.969 mmol) in thf (5 mL) was added dropwise whilst stirring. Upon complete addition, the reaction mixture was stirred for further 10 min and all volatiles were subsequently removed under reduced pressure to yield a colourless solid, which was washed with pentane and dried under vacuum to yield **1b** as a colourless solid (1650 mg, 86%). Single crystals suitable for X-ray diffraction analysis could be obtained by slow cooling of a saturated thf/pentane solution of **1b**. ¹H NMR (400 MHz; [D₈]thf): $\delta = -1.04$ (br. s, 8 H, GaCH₂), -0.68 (d, $^2J_{Y,H} = 3.0$ Hz, 4 H, YCH₂), -0.11 [s, 36 H, GaCH₂Si(CH₃)₃], -0.04 [s, 18 H, YCH₂-

FULL PAPER J. Okuda et al.

Si(CH₃)₃], 1.77 (16 H, β-CH₂, thf), 3.62 (16 H, α-CH₂, thf) ppm. 13 C NMR (100 MHz; [D₈]thf): δ = 2.67 (GaCH₂), 4.02 [GaCH₂-Si(CH₃)₃], 4.07 [YCH₂Si(CH₃)₃], 26.31 (β-CH₂, thf), 37.47 (d, $^{1}J_{Y,C}$ = 41.6 Hz, YCH₂), 68.21 (α-CH₂, thf) ppm. 1 H NMR (400 MHz; C₆D₆): δ = -0.49 (br. s, 12 H, GaCH₂ and YCH₂), 0.26 [br. s, 54 H, YCH₂Si(CH₃)₃ and GaCH₂Si(CH₃)₃], 1.31 (16 H, β-CH₂, thf), 3.70 (16 H, α-CH₂, thf) ppm. 13 C{ 1 H} NMR (100 MHz; C₆D₆): δ = 3.64 [br., GaCH₂Si(CH₃)₃ and YCH₂Si(CH₃)₃], 25.24 (β-CH₂, thf), 33.82 (v br, GaCH₂ and YCH₂), 69.56 (α-CH₂, thf) ppm. C₄₀H₉₈GaO₄Si₆Y (970.36): calcd. C 49.51, H 10.17; found C 48.61, H 10.43%.

[Y(CH₂SiMe₃)₂(thf)₄|[In(CH₂SiMe₃)₄] (1c): To a solution of $[Y(CH_2SiMe_3)_3(thf)_2]$ (487 mg, 0.984 mmol) in thf (5 mL), [In(CH₂SiMe₃)₃] (371 mg, 0.984 mmol) in thf (5 mL) was added dropwise whilst stirring. Upon complete addition, the reaction mixture was stirred for a further 10 min and volatiles were subsequently removed under reduced pressure to yield an oily solid, which was washed with pentane and dried under vacuum to yield 1c as a colourless solid (823 mg, 82.4%). ¹H NMR (400 MHz; [D₈]thf): $\delta = -1.07$ (br. s, 8 H, InCH₂), -0.68 (d, ${}^{2}J_{Y,H} = 3.3$ Hz, 4 H, YCH₂), -0.10 [s, 36 H, InCH₂Si(CH₃)₃], -0.04 [s, 18 H, YCH₂Si(CH₃)₃], 1.77 (16 H, β -CH₂, thf), 3.62 (16 H, α -CH₂, thf) ppm. ¹³C NMR (100 MHz; [D₈]thf): $\delta = 4.02$ [InCH₂Si(CH₃)₃], 4.06 [YCH₂Si(CH₃)₃], 26.31 (β -CH₂, thf), 37.47 (d, ${}^{1}J_{Y,C}$ = 42.5 Hz, YCH₂), 68.20 (β-CH₂, thf), the signal for the InCH₂ carbons was not detected ppm. ¹H NMR (400 MHz; C_6D_6): $\delta = -0.48$ (br. s, 12 H, $InCH_2$ and YCH_2), 0.28 [br. s, 54 H, $InCH_2Si(CH_3)_3$ and YCH_2 - $Si(CH_3)_3$, 1.34 (16 H, β -CH₂, thf) 3.65 (16 H, α -CH₂, thf) ppm. ¹³C{¹H} NMR (100 MHz; C₆D₆): $\delta = 3.79$ [br., InCH₂Si(CH₃)₃ and YCH₂Si(CH₃)₃], 25.38 (β-CH₂, thf), 69.12 (β-CH₂, thf) ppm. the signals for the InCH2/YCH2 carbons were not detected. C₄₀H₉₈InO₄Si₆Y (1015.45): calcd. C 47.31, H 9.72; found C 46.28, H 9.94%.

NMR-Tube Synthesis of [Y(CH₂SiMe₃)₂(12-crown-4)(thf)|[Al(CH₂-SiMe₃)₄] (2a): To a solution of [Y(CH₂SiMe₃)₂(thf)₄][Al(CH₂-SiMe₃)₄] (20 mg, 21.6 μmol) in C₆D₆, neat 12-crown-4 (3.5 μL, 21.6 μmol) was added and the reaction mixture was shaken. ¹H NMR (400 MHz; C₆D₆): δ = -0.68 (d, ² $J_{Y,H}$ = 3.0 Hz, 4 H, YCH₂), -0.62 (br. s, 8 H, AlCH₂), 0.23 [s, 18 H, YCH₂Si(CH₃)₃], 0.50 [s, 36 H, AlCH₂Si(CH₃)₃], 1.42 (16 H, β-CH₂, thf), 3.36 (br. s, 16 H, CH₂, 12-crown-4), 3.58 (16 H, α-CH₂, thf) ppm. ¹³C{¹H} NMR (100 MHz; C₆D₆): δ = 3.30 (AlCH₂), 4.30 [YCH₂Si(CH₃)₃], 4.83 [AlCH₂Si(CH₃)₃], 25.68 (β-CH₂, thf), 36.73 (d, ¹ $J_{Y,C}$ = 40.7 Hz, YCH₂), 68.00 (br., CH₂, 12-crown-4), 68.37 (α-CH₂, thf) ppm.

 $[Y(CH_2SiMe_3)_2(12-crown-4)(thf)][Ga(CH_2SiMe_3)_4]$ (2b): To a solution of $[Y(CH_2SiMe_3)_3(thf)_2]$ (200 mg, 0.38 mmol) in thf (2 mL) were successively added [Ga(CH₂SiMe₃)₃] (131 mg, 0.38 mmol) in thf (1 mL) and neat 12-crown-4 (70 mg, 0.38 mmol). The resulting clear solution was stirred for five minutes, after which the volatiles were removed under vacuum. Washing with pentane (2×10 mL) and drying afforded 2b as a white powder (315 mg, 89%). ¹H NMR (400 MHz; C_6D_6): $\delta = -0.68$ (d, ${}^2J_{Y,H} = 3.1$ Hz, 4 H, YCH₂), -0.43(s, 8 H, GaCH₂), 0.22 [s, 18 H, YCH₂Si(CH₃)₃], 0.49 [s, 36 H, GaCH₂Si(CH₃)₃], 1.44 (4 H, β -CH₂, thf), 3.17 and 3.43 (2×8 H, m, CH₂, 12-crown-4), 3.59 (4 H, α-CH₂, thf) ppm. 13 C{ 1 H} NMR (100 MHz; C_6D_6): $\delta = 2.5-3.8$ (br. m, $GaCH_2$), 4.32 [YCH₂Si- $(CH_3)_3$], 4.65 [GaCH₂Si(CH_3)₃], 25.64 (β -CH₂, thf), 36.85 (d, ${}^1J_{Y,C}$ = 41.6 Hz, YCH₂), 67.58 (12-crown-4), $68.61 \text{ ($\alpha$-CH₂$, thf) ppm.}$ C₃₆H₉₀GaO₅Si₆Y (930.25): calcd. C 46.48, H 9.75; found C 45.83, H 9.43%.

[Y(CH₂SiMe₃)₂(12-crown-4)(thf)][In(CH₂SiMe₃)₄] (2c): Following the procedure described for 2b, [Y(CH₂SiMe₃)₃(thf)₂] (200 mg,

0.38 mmol) in thf (2 mL) was treated with [In(CH₂SiMe₃)₃] (131 mg, 0.38 mmol) in thf (1 mL) and neat 12-crown-4 (70 mg, 0.38 mmol). Identical work-up afforded **2c** as a white powder (333 mg, 90%). ¹H NMR (400 MHz; C₆D₆): δ = -0.68 (d, $^2J_{Y,H}$ = 3.2 Hz, 4 H, YCH₂), -0.47 (br. s, 8 H, InCH₂), 0.22 [s, 18 H, YCH₂Si(CH₃)₃], 0.48 [s, 36 H, InCH₂Si(CH₃)₃], 1.44 (4 H, β -CH₂, thf), 3.17 and 3.41 (m, 2×8 H, CH₂, 12-crown-4), 3.59 (4 H, α -CH₂, thf) ppm. ¹³C{¹H} NMR (100 MHz; C₆D₆): δ = 4.30 [YCH₂-Si(CH₃)₃], 4.60 [InCH₂Si(CH₃)₃], 25.66 (β -CH₂, thf), 36.79 (d, $^1J_{Y,C}$ = 41.6 Hz, YCH₂), 67.57 (12-crown-4), 68.53 (α -CH₂, thf) ppm. the signal for the InCH₂ carbons was not detected. C₃₆H₉₀InO₅Si₆Y (975.35): calcd. C 44.33, H 9.30; found C 43.78, H 9.15%.

[B(CH₂SiMe₃)₃] (3): This compound was synthesised according to the procedure described in the literature^[5a] and isolated as a colourless liquid (9745 mg, 74.5%), m.p. -32 °C. ¹H NMR (500 MHz; C₆D₆): δ = 0.12 [s, 27 H, Si(CH₃)₃], 0.93 (s, 6 H, BCH₂) ppm. ¹³C{¹H} NMR (125 MHz, C₆D₆): δ = 0.02 [Si(CH₃)₃], 23.80 (BCH₂) ppm. ¹¹B NMR (160 MHz, C₆D₆): δ = 78.8 ppm.

[{Al(CH₂SiMe₃)₃}₂] (4): The product was synthesised according to the procedure described in literature^[5b] and isolated as a colourless liquid (6490 mg, 75.0%), m.p. –18 °C. ¹H NMR (500 MHz; C₆D₆): δ = –0.54 (s, 6 H, AlCH₂), 0.00 [s, 27 H, Si(CH₃)₃] ppm. ¹³C{¹H} NMR (125 MHz; C₆D₆): δ = 0.27 [Si(CH₃)₃], 2.65 (AlCH₂) ppm. ²⁷Al NMR (130 MHz; C₆D₆): δ = 290.3 ppm.

[Ga(CH₂SiMe₃)₃] (5): The product was synthesised according to the published procedure^[5c] and isolated as a colourless liquid (2575 mg, 65.2%), m.p. -42 °C. ¹H NMR (400 MHz. CD₂Cl₂): δ = 0.06 [s, 27 H, Si(CH₃)₃], 0.08 (s, 6 H, GaCH₂) ppm. ¹³C{¹H} NMR (100 MHz. CD₂Cl₂): δ = 2.4 [Si(CH₃)₃], 12.5 (GaCH₂) ppm.

[In(CH₂SiMe₃)₃] (6): The product was synthesised according to the published procedure^[5d] and isolated as a colourless liquid (4701 mg, 55.2%), m.p. –45 °C. ¹H NMR (400 MHz. CD₂Cl₂): δ = –0.06 (s, 6 H, InCH₂), 0.03 [s, 27 H, Si(CH₃)₃] ppm. ¹³C{¹H} NMR (100 MHz. CD₂Cl₂): δ = 2.47 [Si(CH₃)₃], 10.79 (InCH₂) ppm.

[Li][Al(CH₂SiMe₃)₄] (7a): The procedure described in the literature^[34] for the synthesis of **4** was slightly modified: In the glovebox, Al(CH₂SiMe₃)₃ (289 mg, 1 mmol) was dissolved in pentane (3 mL); Li(CH₂SiMe₃) (94 mg, 1 mmol) in pentane (3 mL) was added dropwise at room temperature. A colourless precipitate formed immediately and the suspension was stirred for 1 h. Filtration, washing with pentane (2 × 5 mL) and drying in vacuo afforded **4** (328 mg, 86%) as a colourless powder. ¹H NMR (500 MHz; [D₈]thf): δ = -1.22 (br. m, 8 H, AlCH₂), -0.11 [s, 36 H, Si(CH₃)₃] ppm. ¹³C{¹H} NMR (100 MHz; [D₈]thf): δ = 1.51 (sextet, ¹ $J_{Al,C}$ = 60 Hz, CH₂), 3.78 [s, Si(CH₃)₃] ppm. ²⁷Al NMR (130 MHz; [D₈]thf): δ = 150.1 (nonet, ² $J_{Al,H}$ = 9.0 Hz) ppm. ⁷Li NMR (194 MHz, [D₈]thf): δ = -0.54 ppm.

[Li(tmeda)₂][Al(CH₂SiMe₃)₄] (7b): In the glovebox, neat tmeda (191 mg, 1.65 mmol) was added at once to a solution of **4** (315 mg, 0.82 mmol) in thf (3 mL), and the resulting clear solution stirred overnight. After all volatiles were removed in vacuo, the residue was washed three times with 5 mL of pentane, and dried in vacuo. The product was isolated as a colourless powder (255 mg, 51%). ¹H NMR (500 MHz, [D₈]thf): δ = -1.22 (br. m, 8 H, AlCH₂), -0.10 [s, 36 H, Si(CH₃)₃], 2.15 [s, 24 H, (CH₃)₂N], 2.31 (s, 8 H, NCH₂CH₂N) ppm. ¹³C{¹H} NMR (125 MHz, [D₈]thf): δ = 2.00 (sextet, ${}^{1}J_{Al,C}$ = 60 Hz, AlCH₂), 4.23 [s, Si(CH₃)₃], 46.2 [(CH₃)₂N], 58.9 (NCH₂CH₂N) ppm. ²⁷Al NMR (130 MHz, [D₈]thf): δ = 150.2 (nonet, ${}^{2}J_{Al,H}$ = 9.0 Hz) ppm. ⁷Li NMR (194 MHz, [D₈]thf): δ = -0.53 ppm. C₂₈H₇₆AlLiN₄Si₄ (615.20): calcd. C 54.67, H 12.45, N 9.11; found C 55.00, H 12.94, N 9.78%.

Table 5. Crystallographic and data collection parameters for compounds 1b, 3, 4, 5, and 7c.

Compound	1b	3	4	5	7c
Empirical formula	C ₄₀ H ₉₈ GaO ₄ Si ₆ Y	$C_{12}H_{33}BSi_3$	C ₂₄ H ₆₆ Al ₂ Si ₆	C ₁₂ H ₃₃ GaSi ₃	C ₃₂ H ₇₆ AlLiO ₈ Si ₄
$M_{ m r}$	970.35	272.46	577.27	331.37	735.21
Crystal system	monoclinic	monoclinic	triclinic	monoclinic	monoclinic
Space group	$P2_{I}/n$	$P2_1/c$	P-1	$P2_1/c$	$P2_1/c$
a [Å]	21.548(3)	6.5339(11)	10.009(2)	6.5482(5)	10.4405(10)
b [Å]	15.689(3)	16.378(3)	10.4113(16)	16.9374(17)	21.327(2)
c [Å]	34.434(5)	18.764(3)	11.3479(18)	18.838(3)	20.566(2)
a [°]			108.780(13)		
β[°]	102.661(5)	105.097(13)	103.538(16)	101.271(10)	104.481(2)
γ [°]			111.771(15)		
$V[\mathring{A}^3]$	11358(3)	1938.7(6)	952.0(3)	2049.0(4)	4433.8(7)
Z	8	4	1	4	4
$D_{\rm calc} [{ m gcm^{-3}}]$	1.135	0.933	1.007	1.074	1.101
T[K]	133(2)	223(2)	248(2)	223(2)	115(2)
$\mu(\text{Mo-}K_{\alpha}) \text{ [mm}^{-1}]$	1.649	0.226	0.277	1.501	0.194
F(000)	4192	608	320	712	1616
θ Range [°]	1.80-27.05	2.25-28.22	3.11-28.09	2.20-28.01	2.17-29.67
Number of reflections col-					
lected	138759	13002	9202	11146	62561
Number of reflections ob-					
served $[I>2\sigma(I)]$	12522	3097	3830	3640	8661
Number of independent					
reflections (R_{int})	24727 (0.1409)	4721 (0.0840)	4601 (0.0318)	4697 (0.0541)	12168 (0.0880)
Data/restraints/param-	, ,	, ,	, ,	, ,	` /
eters	24727/18/973	4721/0/154	4601/0/162	4697/0/154	12168/0/415
Goodness-of-fit on F^2	0.831	1.008	1.011	1.071	0.938
R_1 , wR_2 [$I > 2\sigma(I)$]	0.0404, 0.0709	0.0520, 0.1110	0.0471, 0.1119	0.0484, 0.1179	0.0412, 0.0930
R_1 , wR_2 (all data)	0.1105, 0.0802	0.0930, 0.1209	0.0615, 0.1182	0.0684, 0.1351	0.0591, 0.0974
Largest difference in peak	,	,	,	,	,
and hole [e Å ⁻³]	0.628 and -0.573	0.372 and -0.172	0.434 and -0.308	0.616 and -1.191	0.564 and -0.453

[Li(12-crown-4)₂][Al(CH₂SiMe₃)₄] (7c): Following the same protocol as for **7b**, this compound was obtained by addition of two equivalents of neat 12-crown-4 (290 mg, 1.65 mmol) to a solution of **4** (315 mg, 0.82 mmol) in thf (3 mL). After work-up, the product was isolated as a colourless powder (320 mg, 53%). A saturated thf solution was cooled down to –40 °C to afford crystals suitable for X-ray diffraction. ¹H NMR (500 MHz, [D₈]thf): δ = –1.22 (br. m, 8 H, AlCH₂), –0.10 [s, 36 H, Si(CH₃)₃], 3.68 (s, 32 H, 12-crown-4) ppm. ¹³C{¹H} NMR (125 MHz, [D₈]thf): δ = 2.00 (sextet, ¹ $J_{Al,C}$ = 60 Hz, AlCH₂), 4.23 [s, Si(CH₃)₃], 70.2 (12-crown-4) ppm. ²⁷Al NMR (130 MHz, [D₈]thf): δ = 150.2 (nonet, ² $J_{Al,H}$ = 9.0 Hz) ppm. ⁷Li NMR (194 MHz, [D₈]thf): δ = –0.21 ppm. C₃₂H₇₆AlLiO₈Si₄ (735.22): calcd. C 52.28, H 10.42; found C 52.54, H 10.44%.

X-ray Diffraction: Data collections were performed with graphitemonochromated Mo- K_{α} radiation ($\lambda = 0.71073$ Å). Single crystals of 3, 4, and 5 were directly grown on a NONIUS CAD4 diffractometer. Capillaries containing ca. 2 µL of 3, 4, and 5 were exposed in appropriate geometry ($\chi = 90^{\circ}$) to a cold stream of N₂; the samples completely solidified. The temperature of the gas stream was gradually increased to the melting point, retaining only a small fraction of solid in the tip of the capillary. Slow cooling resulted in a crystalline sample. The procedure was repeated until single crystals of satisfactory quality were obtained; their diffraction pattern was directly registered on the CAD4 diffractometer. The structures of 3 and 5 are closely related and probably isomorphous. Intensity data for 1b and 7c were collected on a Bruker CCD D8 goniometer equipped with a SMART APEX CCD detector. Data were processed using SAINT and SADABS to yield the reflection data file.[38] Subsequent calculations were carried out using the SHELXS and SHELXL programs.[39] Analytical scattering factors for neutral atoms were used throughout the analysis.^[40] The hydrogen atoms attached to the bridging carbon atom in **4** were freely refined; all other H atoms were included at calculated positions. Crystal data, parameters of data collection and convergence results for the diffraction experiments are compiled in Table 5.

CCDC-621523 (for **1b**), -620839 (for **3**), -620838 (for **4**), -620840 (for **5**), -620841 (for **7c**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft (DFG), the Fonds der Chemischen Industrie (Kekulé fellowship to M. U. K.) and the Alexander von Humboldt Foundation (postdoctoral fellowship to Y. N.) for financial support.

For recent reports, see: a) S. Bambirra, A. Meetsma, B. Hessen, Organometallics 2006, 25, 3454–3462; b) S. Bambirra, A. Meetsma, B. Hessen, A. P. Bruins, Organometallics 2006, 25, 3486–3495. For reviews, see: c) P. M. Zeimentz, S. Arndt, B. R. Elvidge, J. Okuda, Chem. Rev. 2006, 106, 2404–2433; d) S. Arndt, J. Okuda, Adv. Synth. Catal. 2005, 347, 339–354.

^[2] S. Hajela, W. P. Schaefer, J. E. Bercaw, J. Organomet. Chem. 1997, 532, 45-53.

^[3] S. Arndt, T. P. Spaniol, J. Okuda, Angew. Chem. Int. Ed. 2003, 42, 5075–5079.

^[4] B. R. Elvidge, S. Arndt, P. M. Zeimentz, T. P. Spaniol, J. Okuda, *Inorg. Chem.* 2005, 44, 6777–6788.

FULL PAPER

J. Okuda et al.

- [5] For the preparation of [{E(CH₂SiMe₃)₃}_n], see: a) E = B: D. Seyferth, *J. Am. Chem. Soc.* 1959, 81, 1844–1847; b) E = Al: C. Tessier-Youngs, O. T. Beachley Jr, *Inorg. Synth.* 1986, 24, 92–93; c) E = Ga: O. T. Beachley Jr, R. G. Simmons, *Inorg. Chem.* 1980, 19, 1021–1025; d) E = In: J. P. Kopasz, R. B. Hallock, O. T. Beachley Jr, *Inorg. Synth.* 1986, 24, 89–91.
- [6] a) G. A. Artamkina, A. B. Tuzikov, I. P. Beletskaya, O. A. Reutov, *Izv. Akad. Nauk SSSR*, *Ser. Khim.* 1980, *10*, 2429; b)
 D. V. Yandulov, J. C. Huffman, K. G. Caulton, *Organometallics* 2002, *21*, 4030–4049.
- [7] a) H. M. Dietrich, G. Raudaschl-Sieber, R. Anwander, *Angew. Chem.* 2005, 117, 5437–5440; b) W. J. Evans, R. Anwander, R. J. Doedens, J. W. Ziller, *Angew. Chem. Int. Ed. Engl.* 1994, 33, 1641–1644; c) M. A. Busch, R. Harlow, P. L. Watson, *Inorg. Chim. Acta* 1987, 140, 15–20.
- [8] The chemical shifts for [Al(CH₂SiMe₃)₃(thf)] were determined as ¹H NMR (200 MHz, C₆D₆): δ = -0.82 ppm (6 H, s, AlCH₂), 0.27 [27 H, s, AlCH₂Si(CH₃)₃], 1.25 (4 H, m, β -CH₂, thf), 3.49 (4 H, m, α -CH₂, thf).
- [9] For a discussion of coordination of anions, see: a) A. Macchioni, *Chem. Rev.* 2005, 105, 2039–2073; b) S. H. Strauss, *Chem. Rev.* 1993, 93, 927–942.
- [10] M. Westerhausen, C. Gückel, T. Habereder, M. Vogt, M. Warchhold, H. Nöth, *Organometallics* 2001, 20, 893–899.
- [11] F. Kaufmann, A. Geraudelle, B. Kaempf, F. Schué, A. Deluzarche, A. Maillard, J. Organomet. Chem. 1970, 24, 13–31.
- [12] Y. Kawakami, Y. Yasuda, T. Tsuruta, Bull. Chem. Soc. Jpn. 1971, 44, 1164–1165.
- [13] C. J. Schaverien, Organometallics 1992, 11, 3476–3478.
- [14] M. R. Kopp, B. Neumüller, Z. Naturforsch., Teil B 1998, 53, 545–551.
- [15] W. Uhl, K.-W. Klinkhammer, M. Layh, W. Massa, Chem. Ber. 1991, 124, 279–284.
- [16] K. Niediek, B. Neumüller, Z. Anorg. Allg. Chem. 1994, 620, 2088–2098.
- [17] R. Boese, D. Bläser, N. Niederprüm, M. Nüsse, W. A. Brett, P. von Ragué Schleyer, M. Bühl, N. van Eikema Hommes, *Angew. Chem. Int. Ed. Engl.* 1992, 31, 314–316.
- [18] A. R. Cowley, A. J. Downs, S. Marchant, V. A. Macrae, R. A. Taylor, S. Parsons, *Organometallics* 2005, 24, 5702–5709.
- [19] G. S. McGrady, J. F. C. Turner, R. M. Ibberson, M. Prager, *Organometallics* **2000**, *19*, 4398–4401.
- [20] J. F. Malone, W. S. McDonald, J. Chem. Soc., Dalton Trans. 1972, 2646–2648.
- [21] a) J. W. Moore, D. A. Sanders, P. A. Scherr, M. D. Glick, J. P. Oliver, J. Am. Chem. Soc. 1971, 93, 1035–1037; b) W. H. Ilsley, M. D. Glick, J. P. Oliver, J. W. Moore, Inorg. Chem. 1980, 19, 3572–3577.

- [22] M. Barber, D. Liptak, J. P. Oliver, Organometallics 1982, 1, 1307–1311.
- [23] J. F. Malone, W. S. McDonald, J. Chem. Soc., Dalton Trans. 1972, 2649–2652.
- [24] M. J. Albright, W. M. Butler, T. J. Anderson, M. D. Glick, J. P. Oliver, J. Am. Chem. Soc. 1976, 98, 3995–3996.
- [25] G. D. Stucky, A. M. McPherson, W. E. Rhine, J. J. Eisch, J. L. Considine, J. Am. Chem. Soc. 1974, 96, 1941–1942.
- [26] The structure of [{Al(Me)₂(μ-C≡CMe)}₂] was determined in the gas phase: A. Almenningen, L. Fernholt, A. Haaland, *J. Organomet. Chem.* **1978**, 155, 245–257.
- [27] J. Z. Nyathi, J. M. Ressner, J. D. Smith, J. Organomet. Chem. 1974, 70, 35–38.
- [28] N. W. Mitzel, C. Lustig, R. J. F. Berger, N. Runeberg, Angew. Chem. Int. Ed. 2002, 41, 2519–2522.
- [29] T. Fjeldberg, A. Haaland, R. Seip, J. Weidlein, *Acta Chem. Scand.*, Ser. A 1981, 35, 437–441.
- [30] T. Fjeldberg, A. Haaland, R. Seip, J. Weidlein, *Acta Chem. Scand., Ser. A* 1981, 35, 637–638.
- [31] B. Tecle, W. H. Ilsley, J. P. Oliver, *Inorg. Chem.* 1981, 20, 2335–2337.
- [32] T. Kräuter, B. Werner, B. Neumüller, Z. Naturforsch., Teil B 1996, 51, 637–645.
- [33] R. B. Hallock, W. E. Hunter, J. L. Atwood, O. T. Beachley Jr, Organometallics 1985, 4, 547–549.
- [34] R. L. Kieft, T. L. Brown, J. Organomet. Chem. 1974, 77, 289– 298.
- [35] a) J. F. Pelletier, A. Mortreux, X. Olonde, K. Bujadoux, *Angew. Chem. Int. Ed. Engl.* 1996, 35, 1854–1856; b) G. J. P. Britovsek, S. A. Cohen, V. C. Gibson, M. van Meurs, *J. Am. Chem. Soc.* 2004, 126, 10701–10712 and references cited therein.
- [36] a) C. Tessier-Youngs, O. T. Beachley Jr, *Inorg. Synth.* 1986, 24, 95–97; b) B. Teclé, A. F. M. Maqsudur Rahman, J. P. Oliver, *J. Organomet. Chem.* 1986, 317, 267–275.
- [37] a) M. F. Lappert, R. Pearce, J. Chem. Soc., Chem. Commun. 1973, 126; b) W. J. Evans, J. C. Brady, J. W. Ziller, J. Am. Chem. Soc. 2001, 123, 7711–7712.
- [38] ASTRO, SAINT and SADABS. Data Collection and Processing Software for the SMART System, Siemens Analytical X-ray Instruments Inc. Madison, WI, USA, 1996.
- [39] a) G. M. Sheldrick, SHELXS-86, Program for Crystal Structure Solution, University of Göttingen, Germany, 1986; b) G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.
- [40] International Tables for X-ray Crystallography, Kluwer Academic Publishers, Dordrecht, 1992, vol. C.

Received: October 31, 2006 Published Online: January 4, 2007